Application of Hydronic Radiant and Beam Systems

ASHRAE Region IV Conference

Milwaukee, WI

May 14, 2010

Darron Rempel

darronr@price-hvac.com

- Topics covered:
 - Theory of using water vs air
 - Discussion of water based technologies
 - Radiant panels
 - Passive beams
 - Active beams
 - Chilled sails
 - Application examples

- Panel research started in ~90 years ago
 - Initially with heated surfaces
 - Cooling started ~50 years ago
 - Died off in North America
 - Usage continued in Europe
- Seeking more capacity
 - Passive chilled beams
 - Integration with ventilation system
- Active chilled beams

THE GOAL

- Reduce energy consumption
- Maintain thermal comfort

CBS Newsletter, Fall 1994

http:/eetd.lbl.gov/newsletter/CBS_NL/n14/RadiantCooling.html

The Opportunity

Roth, K. W., et al., Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume III: Energy Savings Potential, Technical Report, prepared by TIAX, LLC for U.S. DOE, July 2002. (NTIS Order No. PB2002-107657)

Why water?

Ability of fluid to transfer energy:
 q = m ρ Cp ΔT

	ρ [kg/m³]	C _p [kJ/kg K]	Sum [kJ/m³ K]
Air	1.23	1.005	1.236
Water	999	4.186	4182

 Water holds ~3400x more energy per volume than air.

Why water?

- Size of piping vs duct
 - Compare 100,000 Btu/hr of transported energy

	ΔT basis	Volume flow rate	Duct/pipe size
Air	20°F	4600 cfm	26" (1200 fpm)
Water	6°F	33 gpm(US)	2" (<4 fps)

Energy consumption

	Volume flow rate	Energy consumption
Air	4600 cfm	2.5 – 3.0 kW
Water	33 gpm(US)	0.27 – 0.33 kW

- Design to avoid condensation why?
 - Avoid dripping into the occupied zone below
 - Avoid dust build up on wet surfaces
 - Avoid condensate trays/piping/pumps

- Design to avoid condensation how?
 - Unit is designed for sensible cooling only
 - Latent removal through ventilation air only
 - Positive pressure
 - Commissioning of infiltration
 - Design controls to handle humidity change
 - Design system based on expectations

- Design to avoid condensation how?
 - o Design:
 - Dew point + 2°F
 - Avoid or design for high latent load applications
 - Use dry air DOAS
 - Exceeding dew point limit
 - Condensation process begins at dew point > surface temperature
 - Speed of process depends on environmental conditions

- Design to avoid condensation how?
 - o Sensing:
 - Room humidity sensors
 - Condensation detection on piping
 - Strategies
 - Water on/off
 - Entering water temperature reset
 - Supply air water content

Purpose:

Passive cooling or heating device using surface temperature modification to provide thermal comfort.

Primarily radiant heat transfer.

- What is radiant heat transfer?
 - Electromagnetic waves
 - Intensity based on temperature and distance/view factor
 - Space/distance is the medium
 - Exchange is based on relative surface temperature

- Background
 - Roman hypocaust radiant heating ~300 BC
 - Middle East radiant cooling ~800 AD
 - Southwest US adobe houses thermal mass
 - Modern research
 - Heating
 - Cooling
 - Modern cooling initially failed
 - Resurgence for energy and thermal comfort

Radiant Thermal Comfort

- Comfort perception
 - Radiant plays key role in comfort
 - o Optimum at 60% radiant, 40% convection (ASHRAE App. ch 53)
 - Average of mean radiant & air temperatures operative temperature

Mean Radiant Temperature

MRT⁴ =
$$T_1^4F_1 + T_2^4F_2 + ... T_n^4F_n$$

T = surface temperature [°R]
F = angle factor

MRT (cooling example) = $72^{\circ}F$ for $T_o = 75^{\circ}F$, $T_{air} = 78^{\circ}F$

Limitation:

- 2D analysis, provides good check
- Best method is view factors (Fundamentals)
- Significant analysis with modelling programs

Mean Radiant Temperature

MRT⁴ =
$$T_1^4F_1 + T_2^4F_2 + ... T_n^4F_n$$

T = surface temperature [°R]
F = angle factor

for $T_o = 75^{\circ}F$, $T_{air} = 70^{\circ}F$ MRT (heating example) = $80^{\circ}F$

Panel surface temperature = 105°F

Radiant Asymmetry

- Limited based on thermal comfort (ASHRAE 55) (< 5% PPD)
 - Heating 9°F
 - Cooling 25°F

MRT top = 69°F MRT bottom = 76°F Asymmetry = 7°F

Radiant Asymmetry

Heating can be more of a challenge

Heating

MRT top = 88°F MRT bottom = 72°F Asymmetry = 16°F

MRT top = 81°F MRT bottom = 72°F Asymmetry = 10°F

Radiant Asymmetry

Heating can be more of a challenge

Radiant Panel Performance

- Standardized test methods
 - ASHRAE 138 not catalogued by anyone
 - EN 14037 heating
 - EN 14240 cooling
- Standardized tests not catalogued by many
 - EN standard is European
 - Standardized tests underperform real performance
 - No surface temperature variations
 - Minimal natural convection only
 - Conservative performance for safety

Radiant Panel Performance

- Calculations
 - ASHRAE Systems Panel Heating and Cooling
 - Radiant

$$q_r = 0.15 \times 10^{-8} [(t_p + 459.67)^4 - (AUST + 459.67)^4]$$

- Convective
 - Heated ceiling (natural)

$$q_c = 0.041 \frac{(t_p - t_a)^{1.25}}{D_e^{0.25}}$$

Cooled ceiling (natural)

$$q_c = 0.39 \frac{\left|t_p - t_a\right|^{0.31} (t_p - t_a)}{D_e^{0.08}}$$

- Based on
 - no forced air convection (ie: displacement, non-occupied hours)
 - Panel surface temperatures and AUST

Radiant Panel Performance

- Calculations
 - Forced convection
 - Radiant

$$q_r = 0.15 \times 10^{-8} [(t_p + 459.67)^4 - (AUST + 459.67)^4]$$

Convective

$$T_{s} > T_{air} \qquad h_{c} = \left[(0.704 \cdot \Delta T^{0.133} / D_{h}^{0.601})^{3} + (2.0 \cdot \text{ACH}^{0.39})^{3} \right]^{1/3} \qquad (\text{W/m}^{2}\text{K})$$
 Ceiling
$$h_{c} = \left[(0.234 \cdot \Delta T^{0.133} / D_{h}^{0.076})^{3} + (0.35 \cdot \text{ACH}^{0.39})^{3} \right]^{1/3} \qquad (\text{Btu/h} \cdot \text{ft}^{2} \cdot \text{F})$$

$$T_{s} < T_{air} \qquad h_{c} = \left[(2.12 \cdot \Delta T^{0.33})^{3} + (2.0 \cdot \text{ACH}^{0.39})^{3} \right]^{1/3} \qquad (\text{W/m}^{2}\text{K})$$

$$h_{c} = \left[(0.308 \cdot \Delta T^{0.33})^{3} + (0.35 \cdot \text{ACH}^{0.39})^{3} \right]^{1/3} \qquad (\text{Btu/h} \cdot \text{ft}^{2} \cdot \text{F})$$

Novoselac A., Burley B.J., Srebric J., New convection correlations for cooled ceiling panels in room with mixed and stratified airflow, HVAC & Research, Vol 12, n° 2, April 2006, pp 279-294

- Based on:
 - High induction diffusers throwing between (not over) the panels
 - Air change rates
 - Panel surface temperatures and AUST

System response

- Depends on layout, flow rate
- Typical response 5 min.

Time lapse IR video – 25 minutes, 0.5 gpm, 12 panels at 2'x6' 4 pass

System response

Surface contact of components

WITHOUT THERMAL PASTE

WITH THERMAL PASTE

ASHRAE

Typical Operating Conditions

	Cooling	Heating
EWT	Dew point + 2°F	90-140-200°F
Water ∆T	2 – 6°F	10-20°F

- Series or parallel piped
- Series piped between multiple panels

General Guidance

- Heating
 - High heating surface temperatures can be uncomfortable
 - Generally a ceiling surface temperature of max 120°F
 - High surface temperatures acceptable with little occupancy
 - Perimeters
 - Spaced out to prevent a blanketed hot surface
 - Air temperature across panel < panel temperature

Cooling

- Radiant asymmetry problems rare
- Maintain surface temperatures above dew point
- Spread out the load
- Air temperature across panel > panel temperature

- General Guidance
 - Use operative temperature for thermal comfort
 - Minimize SAT ΔT, or
 - Minimize air volume
 - Offset variations in surface temperatures
 - Hot/cold walls/ceilings
 - High solar gain
 - Use panels to activate building mass
 - Off hour temperature stabilization
 - Requires 4"-6" of clearance
 - Integrate ceiling components (sprinklers, PA, lighting)

- Minimize ventilation
- Work with operable windows
- Offset high solar gain
- Activate building mass

- Low ventilation requirement
- Maintain comfort

Purpose:

Passive cooling device using natural convection to provide cooling.

Dependent on temperature differential between air and water.

- Background
 - First installations in 1980s
 - Concentrated passive cooling
 - Displacement ventilation

Operation

- Warm air pools in ceiling space
- Air cools on contact
- Cooling is density driven
- Velocity related to cooling capacity.

- Passive beam
 - o 12" x 48" beam in 24"x48" grid ceiling

- Application
 - At least ¼ of width above beam for air flow
 - Free area ≥ ½ the area of the beam face
 - Perimeter applications
 - Offset from the heat source
 - May need to capture the warm current

- Application
 - Perforated ceiling
 - Offset spreads out cool air, reduces velocity
 - Metal ceiling cools, acts like radiant panel
 - Free area should be within 20' of beam

- General Guidance
 - Allow warm air to rise
 - Higher temperature air = higher capacity
 - Velocities above 50 fpm at ~250 Btu/hr ft
 - Avoid locating over heat sources
 - Offset to prevent collisions
 - May chill sedentary occupants
 - Acts like DV air
 - Avoid disturbing air flow patterns
 - Move cooled below beam
 - Maintain cooling without primary air

Typical Operating Conditions

	Cooling	Heating
EWT	Dew point + 2°F	n/a
Water ∆T	2 – 6°F	n/a

Parallel or series piped

Passive Beam Performance

- Standardized test methods
 - EN 14518
- Catalogued based on MWT Tair
 - Relates to Btu/hr ft
- o Capacity corrections:
 - Skirt height
 - Unit width
 - Free space above unit
 - Return below the unit > 50% free area no correction
 - Free area > 60% for supply no correction
 - Perforation hole size (larger is better)

- Lower supply air requirement
- Maintain cooling with high temperature source water

- Works together with DV to provide cooling
- Provides cooling minimum visibility

Purpose:

Active cooling device using minimal primary air inducing secondary air to provide cooling / heating.

Dependent on temperature differential between air and water.

- Background
 - Original theory with induction units old
 - o Installations in 1990s in Europe
 - Extension of the passive beam

Operation

- o Primary air
 - Minimal amounts
 - Forced through nozzles
- Secondary air
 - Drawn up through coil
- o 2 or 4 pipe

- Active beam
 - o 12" x 48" beam in 24"x48" grid ceiling

Application

Typically 35-40 Btu/hr ft²
 without draft

- Flexible design
- o Types
 - 1 way
 - 2 way
 - 4 way
- Use thermal plumes for capacity

Active Beam Performance

- Standardized test methods
 - EN 15116
 - ASHRAE in development
- Catalogued based on MWT Tair
 - Based on nozzle configuration
- Capacity considerations
 - Nozzles
 - Pressure drop
 - Trade-off:
 - » Small nozzles = high Btuh/cfm, low Btuh/ft
 - » Large nozzles = low Btuh/cfm, high Btuh/ft
 - Primary air temperature
 - High primary air temperature

General Guidance

- Minimize air, maximize water
- Increasing air/ft increases capacity
 - increased induction = increased cooling/heating capacity
 - increased throw = increased ΔP = increased noise
- Constant volume typical, VAV possible
- Location
 - 12' ceiling
 - Thermal plumes
- Temperature control with water
- o EWT < 140°F
- Low height

General Guidance

Maintenance

Total per 20 year span

Beam Maintenance Costing - source: Rehva, Chilled Beam Application (
Maintenance of Fan Coil Terminal Un	its over 20 year	Maintenance of Chilled Beams over 20	years	
Number of FC Terminal units	150	Number of chilled beams	300	
Filter change		Number of years per cleaning	5	
Number times per year	2	Hours per beam	0.25	
Cost per filter	\$25	Labour cost per hour	\$20	
Hours per filter	0.25			\$6,000
Labour cost per hour	\$20			
		\$180,000		
Condensate system cleaning				
Number times per year	1			
Hours per terminal	0.25			
Labour cost per hour	\$20			
		\$15,000		
Terminal unit motor replacement				
Cost per motor	\$200			
Hours per motor	2			
Labour cost per hour	\$20			
		\$36,000		

\$231,000

\$6,000

General Guidance

- Condensation trays?
 - Consider ASHRAE 62.1
 - Inspected for growth min 1x annually (+\$)
 - Cleaned if growth found (+\$)
 - Connected to a removal system (+\$)
 - Field tested or certified slope
 - Coils expected to be wet need MERV6 filter loss of capacity
 - Wet coils attract dust caking and required cleaning (+\$)
 - Consider health
 - Biological growth can lead to health issues

Typical Operating Conditions

	Cooling	Heating		
SAT	55 – 65°F	60 – 90°F		
Airflow Rate	3 – 25	cfm/ft		
EWT	Dew point + 2°F	90-140°F		
Water ∆T	2 – 6°F	10-20°F		
Water Flow Rate	min – 0.4 gpm max – 2 gpm			
Water ∆P	0 - 10'			
Air ΔP	0.2 – 0.75" target 0.4"-0.6"			

Parallel piped

- Installation
 - Threaded rod to hangers
 - Speed rail for adjustment
 - Horizontal duct entrance typical

Installation

- Coil connections
 - Options:
 - Bare Solder, Braze, press on, push on
 - NPT
 - Connection
 - Hard pipe
 - Flex hose

- o 800 ft² open office space
- o 8 people
- o Load
 - Sensible 28,000 Btu/hr
 - Latent 1,600 Btu/hr
- Design point conditions
 - 75°F db/50% RH (65 gr/lb)
 - Min ventilation (ASHRAE 55) = 88 cfm

- o Latent load:
 - Supply air
 - RTU: $55^{\circ}F$ db/ $53.5^{\circ}F$ wb; w = 58.7 gr/lb
 - DOAS w/heat recovery: 58°F db/54°F wb; w = 55.9 gr/lb
 - $1,600 = 0.68 \times cfm \times (65 w)$
 - RTU: at w = 58.7 gr/lb, cfm = 373
 - DOAS: at w = 55.9 gr/lb, cfm = 258

- o Roughing in the beams:
 - Use an example beam, no primary air cooling
 - 8' beam
 - Troom = 75°F
 - -SAT = 75°F
 - EWT = dp + 2°F = 57°F
 - Water flow rate = 1.5 gpm
 - $\Delta P air = 0.5''$

Nozzle config	cfm	Coil Btu/hr
А	37	2916
В	55	3161
С	90	4295
D	110	4423
Е	166	4846

- o Roughing in the beams:
 - Add air side cooling
 - 55°F db
 - Get total Btu/hr

Nozzle config	cfm	Coil Btu/hr	Air Btu/hr	Total Btu/hr
А	37	2916	799	3715
В	55	3161	1188	4349
С	90	4295	1944	6239
D	110	4423	2376	6799
Е	166	4846	3585	8431

- o Roughing in the beams:
 - Find capacity per cfm and per length

Nozzle config	cfm	Total Btu/hr	Btuh/cfm	Btuh/ft
А	37	3715	100.4	464
В	55	4349	79.1	543
С	90	6239	69.3	779
D	110	6799	61.8	849
Е	166	8431	50.8	1053

- o Roughing in the beams:
 - Convert to total cfm and length using load
 28,000 Btu/hr

Nozzle config	Btuh/cfm	Btuh/ft	Total CFM	Total Length
А	100.4	464	279	60
В	79.1	543	354	52
С	69.3	779	404	36
D	61.8	849	453	33
Е	50.8	1053	551	27

- o Roughing in the beams:
 - Compare to original min cfm
 - Std RTU: min cfm = 373

Nozzle config	cfm	Total Btu/hr	Btuh/cfm	Btuh/ft	Total CFM	Total Length
А	37	3715	100.4	464	279	60
В	55	4349	79.1	543	354	52
С	90	6239	69.3	779	404	36
D	110	6799	61.8	849	453	33
Е	166	8431	50.8	1053	551	27

- o Roughing in the beams:
 - Compare to original min cfm
 - DOAS w/ heat recovery (higher primary air temp)
 - » min cfm = 258

Nozzle config	cfm	Total Btu/hr	Btuh/cfm	Btuh/ft	Total CFM	Total Length
А	37	3595	97.2	449	288	62
В	55	4171	75.8	521	369	54
С	90	5947	66.1	743	424	38
D	110	6443	58.6	805	478	35
Е	166	7894	47.6	987	589	28

Design example

Compare and decide

	DTIL 4	DTILO	DO 46 4	DO 46 2
	RTU-1	RTU-2	DOAS-1	DOAS-2
Length - nominal [in]	96	96	120	120
Width - nominal [in]	24	24	24	24
Height - nominal [in]	10	10	10	10
Primary Airflow [cfm]	85	80	47	50
Nozzle Configuration	С	С	Α	Α
Airside Pressure Loss [in wc]	0.46	0.41	0.51	0.56
Sound Power [NC]	25	23	-	-
Cooling				
Indoor Air Temperature [F]	75.0	75.0	75.0	75.0
Supply Air Temperature [F]	55.0	55.0	58.0	58.0
Water Flow Rate [gpm]	1.12	1.78	2.52	1.46
Water Supply Temperature [F]	57.0	57.0	57.0	57.0
Capacity, water-side [BTUh]	3772	3876	3804	3752
Capacity, air-side [BTUh]	1836	1728	863	918
Total Beam Capacity [BTUh]	5608	5604	4667	4670
Summary				
Quantity	5	5	6	6
Total cfm	425	400	282	300
Total Btu/hr	28,041	28,022	28,002	28,017
Total length	40	40	60	60

- Operates as linear slot diffuser
- Integrates with tile grid, drywall

- 1 way throw
- Located at bulkhead

Purpose:

Passive cooling device combined radiant and convective cooling

Cross between radiant panel and passive beam.

ASHRAE

- Background
 - o Installations from late 1990
 - Blend of radiant and convection
 - More cooling
 - Reduce draft risk

Operation

- Warm air contacts cool elements
- Surface temperature activated for radiant exchange

- Chilled sail
 - o 24" x 48" exposed sail

- Application
 - Combined with other ventilation sources
 - o Flexible design
 - Types
 - Exposed
 - Concealed
 - Increases total cooling capacity in area

General Guidance

- Minimize air, maximize water
- Takes advantage of operative temperature
- Active building mass
- Locate over occupants
- Higher surrounding temperatures increase convection
- Ventilation
 - Works best with DV
 - Blow O/H cool air elsewhere
- Heating is application specific
- > 60% of ceiling space reduces capacity

Typical Operating Conditions

	Cooling	Heating
EWT	Dew point + 2°F	Application specific
Water ∆T	2 – 6°F	Application specific

Parallel or series piped

Design Example

- Single occupant office
 - 10'x10'
 - Exposed ceiling deck, sails at 9'
 - Latent load = 220 Btu/hr
 - Sensible load = 3,500 Btu/hr
 - Min ventilation = 20 cfm
 - SAT = 45°F db/45°F wb (w = 44.3 gr/lb)
 - Troom = 77°F db/63.6°F wb (w = 67.1 gr/lb, dp = 56°F)
 - Toperative = 75°F
 - EWT = 58°F

Design Example

- Sail capacity = 50.7 Btu/hr ft²
 - Troom = 77° F
 - EWT = 58°F
- Air sensible capacity
 - $Q = 1.08 \times cfm \times \Delta T = 1.08 \times 20 \times (77-45) = 691 Btu/hr$
- Air latent capacity
 - $Q = 0.68 \times cfm \times \Delta w = 0.68 \times 20 \times (67.1-44.3) = 310 \text{ Btu/hr}$
- o DP < EWT
- Remaining sensible load
 - 3,500 691 = 2809 Btu/hr
 - At 50.7 Btu/hr $ft^2 = 55 ft^2$
 - Use 3 @ 2.5'x 8' (60 ft²)

- Classroom environment with operable windows
- Maintain comfort with minimum air

- High radiant exchange with ceiling sail
- Displacement ventilation air supply

Review of technology

Comparison of technologies

Based on common operating conditions

	Panels	Sails	Passive Beam	Active Beam
Cooling	Up to 30 Btuh/ft²	50-55 Btuh/ft ²	100 – 500 Btuh/ft	400 – 1000 Btu/ft
Heating	> 90 Btuh/ft²	Application specific	None	500 – 1400 Btu/ft
Ventilation	None	None	None	Integrated

Review of technology

Review of applications

	Panel	Sail	Passive beam	Active Beam
Office	good	good	good	good
Laboratory	good	good	good	good*
Classroom	Fair	good	good	fair
Renovation	good*	good*	good*	good*
Healthcare	good	?	,	?

Systems design

"Low grade" energy sources

Cooling water	Heating Water
Ground source heat pump	Ground source heat pump
Zone to zone heat pump	Condensing boiler
Dehumidification leaving water	Solar
Economizer	
Evaporative Cooling	
Open pond	

Costing Comparisons

Variations from average design

Higher	Lower	
Piping	Ducting	
Valving	Fan and dehumidification equip.	
Hydronic components	Plenum depth (fl. to fl. height)	
Additional chiller (?)	Support infrastructure	
Cooling/heating technology (?)	Riser/mechanical space	
	Chiller operating cost	
	"low grade" energy usage	
	Annual maintenance	
	Architectural ceiling (visible sail)	

Piping – shared chiller

Piping – staging tank

Piping – supply and control

Ducting

Commissioning

- Water flow rates
- Nozzle configuration (active beam)
- Plenum pressure = cfm (active beam)

QUESTIONS?

ASHRAE